Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis.

نویسندگان

  • M Grifman
  • N Galyam
  • S Seidman
  • H Soreq
چکیده

Accumulated evidence attributes noncatalytic morphogenic activitie(s) to acetylcholinesterase (AChE). Despite sequence homologies, functional overlaps between AChE and catalytically inactive AChE-like cell surface adhesion proteins have been demonstrated only for the Drosophila protein neurotactin. Furthermore, no mechanism had been proposed to enable signal transduction by AChE, an extracellular enzyme. Here, we report impaired neurite outgrowth and loss of neurexin Ialpha mRNA under antisense suppression of AChE in PC12 cells (AS-ACHE cells). Neurite growth was partially rescued by addition of recombinant AChE to the solid substrate or by transfection with various catalytically active and inactive AChE variants. Moreover, overexpression of the homologous neurexin I ligand, neuroligin-1, restored both neurite extension and expression of neurexin Ialpha. Differential PCR display revealed expression of a novel gene, nitzin, in AS-ACHE cells. Nitzin displays 42% homology to the band 4.1 protein superfamily capable of linking integral membrane proteins to the cytoskeleton. Nitzin mRNA is high throughout the developing nervous system, is partially colocalized with AChE, and increases in rescued AS-ACHE cells. Our findings demonstrate redundant neurite growth-promoting activities for AChE and neuroligin and implicate interactions of AChE-like proteins and neurexins as potential mediators of cytoarchitectural changes supporting neuritogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons.

Acetylcholinesterase (AChE) exerts noncatalytic activities on neural cell differentiation, adhesion, and neuritogenesis independently of its catalytic function. The noncatalytic functions of AChE have been attributed to its peripheral anionic site (PAS)-mediated protein-protein interactions. Structurally, AChE is highly homologous to the extracellular domain of neuroligin, a postsynaptic transm...

متن کامل

An analysis of acetylcholinesterase sequence for predicting mechanisms of its non-catalytic actions

The enzyme acetylcholinesterase (AChE) which belongs to the family of alpha/beta hydrolases is well known for hydrolyzing the neurotransmitter acetylcholine (ACh). In addition to its catalytic function, AChE appears to play a significant non-catalytic role in development, regeneration and modulation of properties of neurons. However the mechanisms underlying these important actions of AChE are ...

متن کامل

Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations.

Comparisons of protein sequence via cyclic training of Hidden Markov Models (HMMs) in conjunction with alignments of three-dimensional structure, using the Combinatorial Extension (CE) algorithm, reveal two putative EF-hand metal binding domains in acetylcholinesterase. Based on sequence similarity, putative EF-hands are also predicted for the neuroligin family of cell surface proteins. These p...

متن کامل

Neuroligin 1: A splice site-specific ligand for β-neurexins

Neurexins are neuronal cell surface proteins with hundreds of isoforms generated by alternative splicing. Here we describe neuroligin 1, a neuronal cell surface protein that is enriched in synaptic plasma membranes and acts as a splice site-specific ligand for p-neurexins. Neuroligin 1 binds to I~-neurexins only if they lack an insert in the alternatively spliced sequence of the G domain, but n...

متن کامل

Investigating the Roles of Cell Adhesion Molecules in Synapse Formation and Function

iii Recent findings have revealed a crucial contribution of the adhesion molecule neuroligin-1 to the precise organization and regulation of intercellular synaptic connections within the central nervous system, and disruption of neuroligin-1 signaling in vivo fosters cognitive abnormalities. Despite considerable recent progress, several uncertainties remain regarding the exact synaptic function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 23  شماره 

صفحات  -

تاریخ انتشار 1998